High Rate Biomethanation of Carbon Monoxide-Rich Gases via a Thermophilic Synthetic Coculture
نویسندگان
چکیده
Carbon monoxide-fermenting microorganisms can be used for the production of a wide range of commodity chemicals and fuels from syngas (generated by gasification of, e.g., wastes or biomass) or industrial off-gases (e.g., from steel industry). Microorganisms are normally more resistant to contaminants in the gas (e.g., hydrogen sulfide) than chemical catalysts, less expensive and self-regenerating. However, some carboxydotrophs are sensitive to high concentrations of CO, resulting in low growth rates and productivities. We hypothesize that cultivation of synthetic cocultures can be used to improve overall rates of CO bioconversion. As a case study, a thermophilic microbial coculture, consisting of Carboxydothermus hydrogenoformans and Methanothermobacter thermoautotrophicus was constructed to study the effect of cocultivation on conversion of CO-rich gases to methane. In contrast to the methanogenic monoculture, the coculture was able to efficiently utilize CO or mixtures of H2/CO/CO2 to produce methane at high efficiency and high rates. In CSTR-bioreactors operated in continuous mode, the coculture converted artificial syngas (66.6% H2:33.3% CO) to an outflow gas with a methane content of 72%, approaching the 75% theoretical maximum. CO conversion efficiencies of 93% and volumetric production rates of 4 m3methane/m3liquid/day were achieved. This case shows that microbial cocultivation can result in a significant improvement of gas-fermentation of CO-rich gases.
منابع مشابه
On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System.
One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, th...
متن کاملSyngas Biomethanation in a Semi-Continuous Reverse Membrane Bioreactor (RMBR)
Syngas biomethanation is a potent bio-conversion route, utilizing microorganisms to assimilate intermediate gases to produce methane. However, since methanogens have a long doubling time, the reactor works best at a low dilution rate; otherwise, the cells can be washed out during the continuous fermentation process. In this study, the performance of a practical reverse membrane bioreactor (RMBR...
متن کاملCommercial Biomass Syngas Fermentation
The use of gas fermentation for the production of low carbon biofuels such as ethanol or butanol from lignocellulosic biomass is an area currently undergoing intensive research and development, with the first commercial units expected to commence operation in the near future. In this process, biomass is first converted into carbon monoxide (CO) and hydrogen (H2)-rich synthesis gas (syngas) via ...
متن کاملA Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases
In this review, recent works on the preferential oxidation of carbon monoxide in hydrogen rich gases for fuel cell applications are summarized. H2 is used as a fuel for polymer-electrolyte membrane fuel cell (PEMFC). It is produced by reforming of natural gas or liquid fuels followed by water gas shift reaction. The produced gas consists of H2, CO, and CO2. In which CO content is around 1%, whi...
متن کاملPreparation of Carbon Molecular Sieves from Pistachio Shell and Walnut Shell for Kinetic Separation of Carbon Monoxide, Hydrogen, and Methane
In this study, two Carbon Molecular Sieves using Pistachio shell (CMS P) and Walnut shell (CMS W) were prepared by a chemical vapor deposition method and used for pressure swing adsorption and separation of CO/H2 and CO/CH4. Adsorption isotherms of gases obtained for both CMS’s. The Dubinin-Radushkevich isotherm model was used for comparing pore volum...
متن کامل